

Welcome to the Gort Guide!

Gort is a chatbot framework designed from the ground up for chatops.

Gort brings the power of the command line to the place you collaborate with your team: your chat window. Its open-ended command bundle support allows developers to implement functionality in the language of their choice, while powerful access control means you can collaborate around even the most sensitive tasks with confidence. A focus on extensibility and adaptability means that you can respond quickly to the unexpected, without your team losing visibility.

Table of Contents

	1. Architecture
	1.1. Gort Controller

	1.2. Data Store

	1.3. Chats

	1.4. Relays and Commands

	1.5. Message Bus

	2. Quick Start
	2.1. Prerequisites

	2.2. Create your Configuration File

	2.3. Create Your Bot User

	2.4. Build the Gort Image (Optional)

	2.5. Starting Containerized Gort

	2.6. Bootstrapping Gort

	2.7. Using Gort

	3. Getting Started
	3.1. Configuring Gort

	3.2. Deploying Gort

	3.3. Bootstrapping Gort

	4. Configuring Gort
	4.1. Reloading a Configuration

	4.2. The Configuration File

	4.3. <gort>

	4.4. <database>

	4.5. <docker>

	4.6. <kubernetes>

	4.7. <discord>

	4.8. <slack>

	4.9. <jaeger>

	4.10. <templates>

	5. Deploying Gort
	5.1. Running Gort in Kubernetes

	5.2. Running Gort in Docker

	5.3. Running Gort as a Native Gort Binary

	6. Bootstrapping Gort

	7. Commands and Bundles
	7.1. Commands

	7.2. Bundles

	7.3. Invoking Commands

	7.4. Implementation Details

	8. Commands As Containers
	8.1. Creating the Container

	8.2. Executing the Command

	8.3. Command Parameters

	8.4. Termination

	8.5. Output

	8.6. Presentation

	8.7. Additional Reading

	9. Command Environment Variables

	10. Command Bundles
	10.1. Bundle Configurations

	10.2. Permissions and Rules

	10.3. Writing a Command Bundle

	10.4. Managing Bundles

	11. Bundle Configurations
	11.1. A Minimal Bundle Configurations

	11.2. Bundle Installation

	11.3. A Complete Bundle Configuration Example

	12. Permissions and Rules
	12.1. Authorization Rules

	12.2. Components of the Authorization System

	12.3. Bringing It All Together

	13. Writing a Command Bundle

	14. Installing Your First Command Bundle
	14.1. Creating Your Bundle

	14.2. Enabling Your Bundle

	14.3. Success!

	15. Managing Bundles
	15.1. Prerequisites

	15.2. Installing Bundles

	15.3. The Bundle Configuration File

	15.4. Enabling and Disabling Bundle Versions

	15.5. Uninstalling Bundles and Bundle Versions

	16. Command Execution Rules
	16.1. Rule Structure

	16.2. The Conditions Clause

	16.3. Permissions

	16.4. Formal Definition

	16.5. Todo

	17. Dynamic Command Configuration
	17.1. Core Concepts

	17.2. Layers

	17.3. Managing Dynamic Configuration Values

	17.4. Future Steps

	18. Output Format Templates
	18.1. The four template types

	18.2. Template Basic Format

	19. The Response Envelope
	19.1. .Request

	19.2. .Request.Bundle

	19.3. .Request.Command

	19.4. .Response

	19.5. .Data

	19.6. .Payload

	20. Template Functions
	20.1. Tags (Actions)

	20.2. Additional Functions

	21. Going Forward: Features to Look Forward To

	Index

	Search Page

Footnotes

1. Architecture

Gort has several parts:

	The controller, which (as its name suggests) acts as the central
control point.

	A data store which stores all application state.

	One or more chat services, such as Slack, which can be used by
users to interact with the controller and issue commands.

	One or more relays, which execute commands at the direction of
the controller.

	A message bus, which is used for communication between the
controller and the relays.

A high-level view of the relationships between these components is
illustrated below.

[image: Gort architecture]

Gort high-level architecture

1.1. Gort Controller

The Gort controller proper. This is what you run when you deploy the
Gort binary.

It lives in the getgort/gort#1
repository.

1.2. Data Store

This stores user, group, and bundle data, as well as a backup of the
transaction logs.

Gort currently supports two kinds of data stores:

	External Postgres, intended for production purposes.

	In-memory, intended for trials, testing, and development.

1.3. Chats

Gort’s primary function is to receive messages from users in Slack
(and/or other supported chat services) and execute the requested
functions.

Currently Gort only supports Slack. It’s possible to interact for a
single Gort installation to interact with multiple chat services of the
same type (multiple Slack workspaces, for example) or different types
(Slack and [when supported] Discord, for example).

1.3.1. Adapters

An adapter is a chat-service-specific implementation that receives
messages from the service in question, translates them into standard
Gort message that can be internally processed, and forwards the message
to the Gort system internal for processing. They can then execute the
same function in reverse, relaying messages from Gort back to the
user(s).

1.3.2. Chat Services

These can be any third-party chat service. Currently only Slack is
supported, with more to come soon.

1.4. Relays and Commands

Commands triggered by users and conveyed through the adapters are first
parsed, compared (by name) against available commands installed as
“command bundles”, and forwarded to a relay for execution by a worker.

1.4.1. Command Bundles

Command bundles are a set of related commands built into a Docker image
or executed natively on the worker. Each bundle includes a list of the
specific commands that can be executed, and a set of permission rules
required to execute each command.

Command bundles can only be installed by an adequately-privileged user
(generally an administrator).

1.4.2. Relays

Caution

This section describes a planned feature that doesn’t yet exist.

Optionally, relays can be tagged with identifiers so that commands can
be executed preferentially by specific relays installed in specific
locations.

1.4.3. Relay Workers

A worker is an ephemeral process executed by a relay to execute a
command at the direction of the Gort controller. Upon completion, the
process’ output and status are conveyed back to the Gort controller via
the message bus.

Typically (and per the specific instructions in the corresponding
command bundle) a worker will function by pulling a container image and
executing the image with the appropriate command and arguments.

1.4.3.1. Local Command Execution

Caution

This section describes a planned feature that doesn’t yet exist.

If so directed in the command bundle (and allowed by the security
settings), a worker is capable of executing a command directly on the
relay’s host.

1.5. Message Bus

Caution

This section describes a planned feature that doesn’t yet exist.

The Gort controller and the relays communicate via a dedicated message
bus, typically Kafka.

Footnotes

	#1

	https://github.com/getgort/gort

2. Quick Start

This quick start page will tell you how to quickly get up and running with a very basic “development mode” Gort service running in a local container, communicating with either Slack or Discord.

The resulting service will be suitable for demo purposes only: do not use it in production!

2.1. Prerequisites

To install the demo version of Gort, you’ll need the following:

	Docker#1 (if using docker compose)

2.2. Create your Configuration File

Tip

For more information, see: Configuring Gort.

	Copy the example configuration file config.yml to development.yml.

	Make the following changes to the development.yml file:

	Remove (or comment out) the kubernetes section.

	If you’re using Slack, remove (or comment out) the discord section.

	If you’re using Discord, remove (or comment out) the slack section.

2.3. Create Your Bot User

Whichever chat implementation you use, you’ll first have to create a bot user. Choose the section below that’s appropriate for your preferred chat provider.

IMPORTANT: Both sections below involve the creation of a secret bot token. Please protect this token carefully: if someone steals it, they can make your bot do whatever they want. You don’t want that.

2.3.1. Create a Slack Bot User

	If you haven’t done so already, create a new Slack workspace <https://slack.com/help/articles/206845317-Create-a-Slack-workspace>.

	Use this link to create a new Slack app: <https://api.slack.com/apps?new_app=1>. Choose to create your app “From an app manifest”.

	Select your workspace and click “Next”.

	Copy the contents of the manifest file slackapp.yaml <https://github.com/getgort/gort/blob/main/slackapp.yaml> into the code box below “Enter app manifest below”, replacing the existing content. Click “Next”.

	Review the summary and click “Create” to create your app.

	On the left-hand bar, under “Settings”, click “Basic Information”.

	Under “App-Level Tokens”, click “Generate Token and Scopes”.

	Enter a name for your token, click “Add Scope” and select “connections:write”. Click “Generate”.

	Copy the app token that starts with xapp- and paste it into the slack section of your development.yml config file as app_token. Click “Done”.

	On the left-hand bar, under “Settings”, click “Install App”.

	You’ll get a screen that says something like “Gort is requesting permission to access the $NAME Slack workspace”; click “Allow”

	At the top of the screen, you should see “OAuth Tokens for Your Workspace” containing a “Bot User OAuth Token” that starts with xoxb-. Copy that value, and paste it into the slack section of your development.yml config file as bot_token.

2.3.2. Create a Discord Bot User

Tip

For a more detailed walk-through, see https://www.writebots.com/discord-bot-token/.

	Go to the Discord Developer Portal at https://discordapp.com/developers/applications/. This portal shows all of your applications and bots. Click the “New Application” button.

	Follow the prompt to give your bot a name.

	(Optional) If you’re feeling creative, add an icon and description for your bot.

	On the menu on the left side of the screen, click “Bot”. It’s the icon that looks like a little puzzle piece.

	Click the blue “Add Bot” button, and confirm that you do, in fact, want to add your bot.

	You should be taken to a page with a green message reading, “A wild bot has appeared!” and a “Token” field. The latter will have and a blue link you can click called “Click to Reveal Token”. Click that link, and copy your bot token to your development.yml configuration file (specifically the bot_token field in your discord section).

	Finally, in order to add your bot to your Discord Server, you’ll need to navigate to the “OAuth2” tab on the left-hand menu.

	Once there, scroll down to the “Oauth2 URL Generator” section. In the “Scopes” section, select the bot checkbox. A URL should appear at the bottom on the window: this will be your URL for adding your bot to a server.

	Finally, scroll down to the “Bot Permissions” section and click the following checkboxes:

	Send Messages

	Embed Links

	Read Message History

	Scroll up, copy the generated URL, and navigate to it by pasting it into a browser. Select the server to add the bot to, and confirm the selected permissions. If you get an “I’m not a robot” captcha, do what you have to do there (unless you actually are a robot).

	You should now have successfully created a Discord Bot Token and added your own bot to a server!

2.4. Build the Gort Image (Optional)

Attention

This step requires that Docker be installed on your machine.

If you want to use the most absolutely bleeding-edge version of Gort, you can build your own local Gort image. If you don’t mind using the stable version, you can skip this step and Docker will automatically download it for you.

To build your own local image you can use the make file included in the root of the Gort repository:

make image

You can verify that this was successful by using the docker image ls command:

$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
getgort/gort 0.9.0 66fca0b90847 5 seconds ago 109MB
getgort/gort latest 66fca0b90847 5 seconds ago 109MB

This should indicate the presence of two images (actually, one image tagged twice) named getgort/gort.

2.5. Starting Containerized Gort

Finally, from the root of the Gort repository, you can start Gort by using docker compose as follows:

docker compose up

If everything works as intended, you will now be running three containers:

	Gort

	Postgres (a database, to store user and bundle data)

	Jaeger (for storing trace telemetry)

2.6. Bootstrapping Gort

Tip

For more information, see: Bootstrapping Gort.

Before you can use Gort, you have to bootstrap it by creating the admin user.

You can do this using the gort bootstrap command and passing it the email address that your Slack provider knows you by, and the URL of the Gort controller API (by default this will be https://localhost:4000):

$ gort bootstrap --allow-insecure https://localhost:4000
User "admin" created and credentials appended to gort config.

Because you haven’t installed any TLS/SSL certificates, Gort will generate and use its own. Normally the Gort client will reject self-signed certificates, but the --allow-insecure flag turns those safeguards off.

Obviously, do not use this feature in production!

2.7. Using Gort

You should now be able to use Gort in any Slack channel that includes your Gort bot. Any Gort commands should be prepended by a !. For example, try typing the following in Slack:

!help

If everything works as expected, you should see an output something like the following:

[image: Gort help text]
This instructs Gort to execute the help command, which is part of the gort bundle. Alternatively, you could have specified the bundle as well by typing something like:

!gort:help user

Footnotes

	#1

	https://docs.docker.com/get-docker/

3. Getting Started

The Gort controller is the core Gort service. It relays messages to and
from the chat providers, manages relay command instructions, and exposes
the REST administration API. See Architecture for more information.

This guide will instruct you through the process of configuring,
installing, running, and bootstrapping the Gort controller.

3.1. Configuring Gort

Gort is configured via a single
YAML#1-formatted configuration
file, typically called config.yml, which is used to describe
everything from database and chat provider settings to default command
bundles.

If the configuration file is changed, Gort can be instructed to “hot
reload” its by sending it a SIGHUP or issuing a GET request to its
v2/reload/ endpoint. If the new configuration is not well-formed,
the changes will not be applied.

Tip

See Configuring Gort for more detail.

3.2. Deploying Gort

Gort can be installed in a variety of ways: it can be run as a
standalone binary, or as a Docker container, or in Kubernetes.

Tip

See Deploying Gort for more detail.

3.3. Bootstrapping Gort

Once Gort is deployed, the database must be set up and the initial
administration user defined, a process referred to as “bootstrapping”.
Once Gort is properly bootstrapped, the administrator will be able to
manage users, install and enable command
bundles, and more.

Tip

See Bootstrapping Gort for more detail.

Footnotes

	#1

	https://en.wikipedia.org/wiki/YAML

4. Configuring Gort

Gort is configured via a configuration file, which is used to describe
everything from database and chat provider configurations to default
command bundles.

Gort can reload its configuration during runtime whenever it detects
that its file has been modified. If the new configuration is not
well-formed, the changes will not be applied.

4.1. Reloading a Configuration

If the configuration file is changed, Gort can be instructed to “hot
reload” its by sending it a SIGHUP or issuing a GET request to its
v2/reload/ endpoint. If the new configuration is not well-formed,
the changes will not be applied.

4.2. The Configuration File

Gort configured using a
YAML#1-formatted configuration
file. To specify which configuration file to load, use the --config
flag to the gort start command.

The configuration YAML format is defined by the scheme described below.
Brackets indicate that a parameter is optional. For non-list parameters
the value is set to the specified default.

Generic placeholders are defined as follows:

	<boolean>: a boolean that can take the values true or
false.

	<duration>: a duration string: a sequence of decimal numbers,
each with optional fraction and a unit suffix: 1d, 1h30m,
5m, 10s. Valid units are “ms”, “s”, “m”, “h”.

	<filename>: a valid path in the current working directory.

	<host>: a valid string consisting of a hostname or IP (possibly
followed by an optional port number).

	<int>: an integer value.

	<path>: a valid URL path.

	<port>: a valid port number ranging from 0 to 65535.

	<secret>: a regular string that is a secret, such as a password.

	<string>: a regular string.

	<template>: a Gort output formatting template.

The other placeholders are specified separately.

A valid example file can be found
here#2.

The global configuration specifies parameters that are valid in all
other configuration contexts. They also serve as defaults for other
configuration sections.

global:
 # How long before a command times out, in seconds. 0 means no timeout.
 [command_timeout: <int> | default = 60]

Gort controller behavior.
gort:
 [- <gort> ...]

Configures Gort's PostgreSQL database.
database:
 [- <database> ...]

Configures Gort's Docker host data.
docker:
 [- <docker> ...]

Configures Gort's Docker host data.
kubernetes:
 [- <kubernetes> ...]

A list of zero or more configurations that describe Discord servers that
Gort can relay to and from.
discord:
 [- <discord> ...]

A list of zero or more configurations that describe Slack workspaces that
Gort can relay to and from.
slack:
 [- <slack> ...]

Configures the Jaeger host, to which Gort sends internal trace telemetry.
jaeger:
 [- <jaeger> ...]

4.3. <gort>

This section contains the settings for the behavior of the Gort
controller.

Gort will automatically create accounts for new users when set.
User accounts created this way will still need to be placed into groups
by an administrator in order to be granted any permissions.
[allow_self_registration: <boolean> | default = false]

The address to listen on for Gort's REST API.
[api_address: <host> | default = ":4000"]

Controls the prefix of URLs generated for the core API. URLs may contain a
scheme (either http or https), a host, an optional port (defaulting to 80
for http and 443 for https), and an optional path.
[api_url_base: <host> | default = "localhost"]

Enables development mode. Currently this only affects log output format.
[development_mode: <boolean> | default = false]

If true, Gort can respond to commands prefixed with !, instead of only
via direct mentions.
[enable_spoken_commands: <boolean> | default = true]

If set along with tls_key_file, TLS will be used for API connections.
This parameter specifies the path to a certificate file.
[tls_cert_file: <filename>]

If set along with tls_cert_file, TLS will be used for API connections.
This parameter specifies the path to a key file.
The key must not be encrypted with a password.
[tls_key_file: <filename>]

4.4. <database>

The database section is used to configure access to Gort’s
PostgreSQL database.

If this section is absent, the Gort controller will use an “in memory”
data model. This is intended for trialing or development and absolutely,
positively should not be used in production.

The host where Gort's PostgreSQL database lives.
[host: <host> | default = "localhost"]

The port at which Gort may access its PostgreSQL database.
[port: <port> | default = 5432]

The user to connect to Gort's PostgreSQL database.
[user: <string>]

The password for connecting to Gort's PostgreSQL database. Alternatively,
this value can (and should) be specified via the GORT_DB_PASSWORD env var.
[password: <secret>]

Set this to true to have Gort connect to its database using SSL.
[ssl_enabled: <boolean> | default = false]

The maximum amount of time a connection may be idle. Expired connections
may be closed lazily before reuse. If <= 0, connections are not closed due
to a connection's idle time.
[connection_max_idle_time: <duration> | default = 1m]

The maximum amount of time a connection may be reused. Expired connections
may be closed lazily before reuse. If <= 0, connections are not closed due
to a connection's age.
[connection_max_life_time: <duration> | default = 10m]

Sets the maximum number of connections in the idle connection pool. If
max_open_connections is > 0 but < max_idle_connections, then this value
will be reduced to match max_open_connections.
If n <= 0, no idle connections are retained.
[max_idle_connections: <int> | default = 2]

The maximum number of open connections to the database. If
max_idle_connections is > 0 and the new this is less than
max_idle_connections, then max_idle_connections will be reduced to match
this value. If n <= 0, then there is no limit on the number of open
connections.
[max_open_connections: <int>]

How long to wait for execution of a database query to complete.
[query_timeout: <duration> | default = 15s]

4.5. <docker>

This section is used to configure Gort’s Docker host data. At the moment
it only includes two values (which are likely to move into a relay
configuration, when that becomes a thing).

This may not be defined if a kubernetes block is also defined.

Defines the location of the Docker port. Required.
host: <path>

The name of a Docker network. If set, any worker containers will be
attached to this network. This can be used to allow workers to communicate
with a containerized Gort controller.
[network: <string>]

4.6. <kubernetes>

This section is used to configure Gort’s behavior when deployed in a
Kubernetes cluster.

This may not be defined if a docker block is also defined.

The label and field selectors for Gort's endpoint resource. These are used
by Gort to dynamically find its own API endpoint. If both are omitted the
label selector "app=gort" is used.
[endpoint_label_selector: <string>]
[endpoint_field_selector: <string>]

The selectors for Gort's pod resource. Used to dynamically find the
API endpoint. If both are omitted the label selector "app=gort" is used.

The label and field selectors for Gort's pod resource. These are used by the
Gort controller to dynamically find its own pod. If both are omitted the
label selector "app=gort" is used.
[pod_field_selector: <string>]
[pod_label_selector: <string>]

4.7. <discord>

This section is used to describe one or more Discord servers that Gort
can receive commands from and relay responses to.

Note that discord allows multiple elements, which means that it’s
possible to configure Gort to interact with multiple Discord servers. It
may also be used in additions to one or more slack definitions.

An arbitrary name for human labelling purposes. It must be unique among all
discord and slack definitions.
name: <string>

The Bot OAuth Token (https://discord.com/developers/docs/topics/oauth2)
used to connect to Discord.
bot_token: <string>

4.8. <slack>

This section is used to describe one or more Slack workspaces that Gort
can receive commands from and relay responses to.

Note that slack allows multiple elements, which means that it’s
possible to configure Gort to interact with multiple Slack workspaces.
It may also be used in addition to one or more discord definitions.

An arbitrary name for human labelling purposes. It must be unique among all
discord and slack definitions.
name: <string>

App Level Token (https://api.slack.com/authentication/token-types#app)
used to connect to Slack. You want the one that starts with "xapp".
app_token: <string>

Bot User OAuth Access Token (https://api.slack.com/docs/token-types#bot)
used to connect to Slack. You want the one that starts with "xoxb".
bot_token: <string>

4.9. <jaeger>

This section is used to configures the Jaeger host to which Gort sends
internal trace telemetry.

The URL for the Jaeger collector that spans are sent to. If not set then
no exporter will be created.
[endpoint: <path> | default = http://localhost:14268/api/traces]

The username to be used in the authorization header sent for all requests
to the collector. If not set no username will be passed.
[username: <string> | default = gort]

The password to be used in the authorization header sent for all requests
to the collector.
[password: <secret>]

4.10. <templates>

The templates section allows the default output formatting
templates to be overridden at the application scope.
Templates defined here may still be overridden at the bundle and command
scopes.

A template used to format the outputs from successfully executed commands.
[command: <template>]

A template used to format the error messages produced by commands that exit
with a non-zero status.
[command_error: <template>]

A template used to format standard informative (non-error) messages from
the Gort system (not commands).
[message: <template>]

A template used to format error messages from the Gort system (not commands).
[message_error: <template>]

Footnotes

	#1

	https://en.wikipedia.org/wiki/YAML

	#2

	https://github.com/getgort/gort/blob/main/config.yml

5. Deploying Gort

This guide will instruct you through the process of installing the Gort
controller.

The Gort controller is the core Gort service, which relays messages to
and from the chat providers, manages relay command instructions, and
exposes the REST administration API. See Architecture for more information.

5.1. Running Gort in Kubernetes

If you have an existing Kubernetes cluster (or are using something like
Minikube or Docker Desktop Kubernetes). you can deploy Gort there. The
easiest way to do this is to use the included Helm chart.

5.1.1. Prerequisites

You’ll need to have Helm#1 installed. If you don’t,
you can follow the instructions here#2.

5.1.2. Deployment

Installing the Helm chart is fairly straight-forward:

helm install gort helm/gort

5.2. Running Gort in Docker

If you don’t have Go installed, you can run Gort with Docker.

5.2.1. Building Your Own Gort Image (Optional)

If you want to use the most absolutely bleeding-edge version of Gort,
you can build your own local Gort image. If you don’t mind using the
stable version, you can skip this step and Docker will automatically
download it for you.

To build your own local image you can use the make file included in
the root of the Gort repository:

make image

You can verify that this was successful by using the docker image ls
command:

$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
getgort/gort 0.9.0 66fca0b90847 5 seconds ago 109MB
getgort/gort latest 66fca0b90847 5 seconds ago 109MB

This should indicate the presence of two images (actually, one image
tagged twice) named getgort/gort.

Now you can check the version of your installation by passing it the
version command (which is equivalent to executing gort version).

$ docker run getgort/gort version
Gort ChatOps Engine v0.9.0

5.2.2. Starting Containerized Gort

Finally, from the root of the Gort repository, you can start Gort by
using docker compose as follows:

docker compose up

If everything works as intended, you will now be running three
containers:

	Gort (listening on port 4000)

	Postgres (a database, to store user and bundle data)

	Jaeger (for storing trace telemetry)

Finally, you should see some output similar to the following:

INFO [0000] Loaded configuration file file=config.yml
INFO [0000] Starting Gort version=0.8.0-alpha.0
INFO [0000] Installing adapter adapter.name=Gort
INFO [0001] Connection to data source established type=postgres.PostgresDataAccess
INFO [0001] Gort controller is starting address=":4000"
INFO [0001] Connecting to Slack provider adapter=Gort provider=Gort
INFO [0001] Connection established to provider adapter.name=Gort adapter.type=slack event=connected

As you may have noticed, this command opens port 4000. This allows the
Gort controller to access the administration API, which is required to
bootstrap your Gort instance.

Congratulations, you now have a running Gort controller!

5.3. Running Gort as a Native Gort Binary

5.3.1. Installing Gort via go install

If you have Go installed#3, you can
build and install Gort in one command using the go install command.

go install github.com/getgort/gort@latest

When installed this way, Gort will be installed to the directory named
by the GOBIN environment variable, which defaults to $GOPATH/bin
or $HOME/go/bin if the GOPATH environment variable is not set.

5.3.2. Building Gort From Source

If you prefer (if you have Go
installed#4), you can also build Gort
from the source code.

To do this, you must first clone the
getgort/gort#5 repository and cd
into it.

git clone git@github.com:getgort/gort.git
cd gort

Once you’re in the Gort code repository, you can use go build to
build the Gort binary.

go build

You should now have an executable binary named gort in your working
directory. You can either run it in place, or move it a directory on
your command path.

5.3.3. Executing a Native Binary

If you installed or built Gort using go, you can run that binary,
pointing to the location of the configuration file.

gort --config ./config.yml

Footnotes

	#1

	https://helm.sh/

	#2

	https://helm.sh/docs/intro/install/

	#3

	https://golang.org/doc/install

	#4

	https://golang.org/doc/install

	#5

	https://github.com/getgort/gort

6. Bootstrapping Gort

Since interactions with Gort require a user account, you’ll need to bootstrap your system before you can do anything interesting with it. This process will create the necessary administrator role and user group, as well as create the first user account and place it into that administrator group. At this point, you can interact with Gort as this first privileged user in order to create other user accounts (to which you can also grant administrative access, if you like), install bundles, and perform other tasks.

The canonical way to do this is to use the gort bootstrap command:

$ gort bootstrap --allow-insecure https://localhost:4000
User "admin" created and credentials appended to gort config.

Note the existence of the --allow-insecure flag. This allows you to communicate with the Gort API across an unencrypted connection, which is commonly the case when you’re testing locally. _**This state should never, ever be used in production.**_

The gort bootstrap command is idempotent: subsequent calls will return an error message, but the Gort system itself will remain unaffected.

If you take a look in ~/.gort/profile, you’ll begin to see what just happened.

$ cat ~/.gort/profile

defaults:
 profile: localhost_4000
localhost:
 url: https://localhost:4000
 password: cZO5E4i8+T6vVRO8m4EvYEyGI2fn86iZ
 user: admin
 allow_insecure: true

Here, we can see that a user named admin has been created for us on the Gort controller. A password has also been generated for this user. Now, whenever we run any gort commands from this machine, these credentials will be used by default to make authenticated API calls.

Gort’s REST API is guarded by Gort’s authorization system, which means that the admin user must have permissions to access the API somehow. As detailed in Permissions and Rules, permissions must be attached to a user somehow through a combination of roles and groups. As you can probably guess, the bootstrapping process handles all this. Let’s use gort to examine what has been done.

First, let’s just check which users exist.

$ gort user list
USERNAME FULL NAME EMAIL ADDRESS
admin Gort Administrator admin@gort

As you can see, there’s just one: admin.

Now let’s examine the core permissions of the Gort system. These govern fine-grained access to the various REST API endpoints and chat commands.

$ gort permission list
NAME
gort:manage_commands
gort:manage_groups
gort:manage_roles
gort:manage_users

That’s a lot of permissions. Gort helps us out by creating an admin role to collect them all together.

$ gort role info admin
Name admin
Permissions manage_commands, manage_groups, manage_permissions, manage_roles, manage_users
Groups admin

Finally, we have a group that is also named admin with the admin user as its sole member. This group is granted the admin role.

$ gort group info admin
Name admin
Users admin
Roles admin

Though the Gort admin user is named “admin”, there’s nothing particularly special about that name. As this tour of the bootstrapping process has shown us, the admin user functions as an administrator, able to perform any task in the Gort system only because it resides in a group that has been granted all the core permissions. Any user in this group would have the same capabilities.

This also shows how to make any Gort user an administrator by adding them to the admin group.

Footnotes

7. Commands and Bundles

As a chatops bot, commands are central to Gort. Let’s take a look at
exactly what commands are, how they’re organized, and how they’re
managed.

Let’s start with an example. Entering the following into Slack:

!gort:help

You should receive a response that looks something like this:

I know about these commands:

curl:curl
gort:bundle
gort:group
gort:help
gort:role
gort:user
gort:version

Typing !gort:help executed the help command from the gort
command bundle. From the response, you can see that the system currently
has two bundles installed (curl, and gort), each of which
contains one or more commands. The curl bundle contains a single
command (also named curl), and the gort bundle contains several
commands, one of which is the help command we just invoked.

Try calling gort:help COMMAND to find out more about a specific
command:

!gort:help gort:user

This should provide a response like the following:

Part of the "gort" bundle.

Allows you to perform user administration.

Use "!gort:user --help" for more information about this command.

As indicated in the above output, many commands also support a dedicated
--help argument (which is handled by the command executable, not by
Gort). For example, typing !gort:help --help will return the
following:

Provides information about a command.

If no command is specified, this will list all commands installed in Gort.

Usage:
 !gort:help [flags] [command]

Flags:
 -h, --help Show this message and exit

7.1. Commands

If you think of Gort as a “shared command line”, then commands are like
the executables in your terminal.

A given command may need some additional information that would not be
shared on the “shared command line”, but will have to be setup by an
administrator, such as an OAuth key. See Dynamic Command Configuration for more information
on how to get this data for command execution.

7.2. Bundles

Bundles (or “command bundles”) are the packaging unit for collections of
one or more commands.

Each references a single Docker container
image#1 that contains
all the binaries and other dependencies for executing one or more
commands. They also include some data about the commands, including a
small amount of documentation and other metadata. See Writing a Command Bundle for more specifics.

Bundles can be installed into Gort by an administrator (or any user with
the manage_commands permission) using the gort command-line
utility. See Managing Bundles for more on bundle installation.

7.2.1. Bundle Permissions and Rules

Bundles also contain a set of permissions and authorization rules for
their commands. When a bundle is installed, these permissions and
accompanying rules are automatically created in the Gort system.

Since permissions are namespaced to the bundle they originate from,
installing a bundle’s permissions will never conflict with any existing
authorization system configurations you may have made. No users are
automatically assigned any of these permissions.

7.2.2. Example: The gort Bundle

The gort bundle is a unique bundle in that it is effectively built into
the bot. All Gort instances will have this bundle installed
automatically, which is how the core permissions and authorization rules
of the system come to be installed.

7.3. Invoking Commands

To invoke a command, like gort:help, you actually have a few
options.

First, you can use a “command prefix”, which defaults to !.

!gort:help

You can also interact with the bot in 1-on-1 chat, in which case you may
type commands directly; everything you type to the bot is considered a
command.

gort:help

7.3.1. Shortcuts

Fully-qualifying all command names with their bundle name (i.e.,
gort:help) can get tedious for frequently-used commands.

Fortunately, Gort allows a shortcut: if a command name happens to be
unique within a Gort installation (that is, no other bundles are
installed that have a command with the same name), you may type the bare
command. For example, gort:help can be replaced with just help,
so long as no other bundles have a help command.

7.3.2. Triggers

You can also configure a command with “triggers” that will cause it to execute when a message matches
a regular expression.

You can define one or more triggers for a command using the triggers field in the bundle yaml:

	::
	gort_bundle_version: 1
name: my_bundle
…

	commands:
	
	my_command:
	description: Example trigger configuration
…
triggers:

	match: mytrigger

	match: (?:[0-9]{1,3}.){3}[0-9]{1,3}

The example above will match all messages containing the text “mytrigger” as well as any message
containing an IPv4 address.

7.4. Implementation Details

Every bundle has a Docker image that contains all of its commands.

By default, the command uses the image’s default entrypoint#2
to handle commands. However, if a command has an executable defined,
then the given binary is used instead (like a Docker –entrypoint
parameter#3).

Any parameters you type into the command line are passed directly to the
containerized binary, which can handle them just like a normal
command-line execution. This allows you to implement your command using
a CLI framework in any language you like.

Tip

See Commands As Containers for more details.

Footnotes

	#1

	https://www.docker.com/resources/what-container

	#2

	https://docs.docker.com/engine/reference/builder/#entrypoint

	#3

	https://docs.docker.com/engine/reference/run/#entrypoint-default-command-to-execute-at-runtime

8. Commands As Containers

As you may recall from Commands and Bundles, the command bundle is the
packaging unit for a collection of one or more actions triggerable by a
user, collectively referred to as “commands”. Each bundle references a
single Docker container
image#1 that contains
all the binaries and other dependencies for executing one or more
commands.

Each command triggered by a user is executed in a
container#2,
executed from the image specified in the bundle definition.

This is actually quite a powerful approach, because it allows you to
construct commands using whatever language is best suited for the job at
hand.

8.1. Creating the Container

Each triggered command results in the spawning of a new worker, whose
job it is to create, manage, and clean up the command container. Each
worker is isolated from other workers, even of the same type, and does
not share any data with other workers.

The type of worker created depends on the execution environment. In a
plain Docker setup, the worker interacts with the Docker daemon to
create and execute a container from the image specified in the command’s
bundle. In Kubernetes, the worker instead creates a Kubernetes
Job#3
resource to manage the container.

In both cases, the new command container gets several default
Environment Variables that can be
useful for command processes.

8.2. Executing the Command

However it’s created, the new container executes the executable
specified in the bundle command. If an executable isn’t specified in
the command, the container’s default ENTRYPOINT#4
is used instead.

By allowing a different executable value to be set for each command
in a bundle, it becomes possible for a single container to contain many
commands. See Writing a Command Bundle for more information.

8.3. Command Parameters

When a command is triggered, the entire string following the command is
tokenized by splitting on whitespace (quoted words are kept together),
and the resulting string array is passed to the container as if the
executable was executed on the command line.

For example, the command executed in response to the trigger
!echo I want "to go" home will receive the string
{ "I", "want", "to go", "home" }.

The consequence of this design is that Gort has no required libraries or
special structures that you need to adhere to. Because command
executables receive parameters as a string array, just like any command
executed on the command line, you can implement your commands using
whatever CLI tooling is most appropriate for your language (Cobra in Go,
Argparse in Python, OptionParser in Ruby, etc.).

8.4. Termination

When a command process completes (or is forcefully terminated, such as
when it times out), Gort captures its exit code, and cleans up (removes)
the container or Kubernetes resources.

The value of this exit code is used to
determine#5 whether the
command was successful: an exit status of 0 indicates success; any other
value is assumed to indicate an error.

8.5. Output

When the container runs, Gort retrieves its stdout and stderr as
a single stream to form the command output. If the command terminates
with an error, this is assumed to be an error message.

8.6. Presentation

Finally, the output is presented to the user. If the output consists of
valid JSON, it will be sent to the templating engine and transformed
according to the appropriate Output Format Templates (you don’t have to worry about that now –
there are perfectly reasonable defaults). Otherwise the output will be
formatted for the user as simple, monospaced text.

8.7. Additional Reading

Discussions of constructing commands and formatting its output at Writing a Command Bundle

Footnotes

	#1

	https://www.docker.com/resources/what-container

	#2

	https://www.docker.com/resources/what-container

	#3

	https://kubernetes.io/docs/concepts/workloads/controllers/job/

	#4

	https://docs.docker.com/engine/reference/builder/#entrypoint

	#5

	https://www.baeldung.com/linux/status-codes

9. Command Environment Variables

Whenever Gort executes a command, it automatically injects a number of
variables into the process’ execution environment.

In general, Gort-related environment variables will be prefixed with
GORT_.

	GORT_BUNDLE: The name of the bundle the current command is a
member of.

	GORT_CHAT_HANDLE: The chat handle of the user executing the
command. This is the bare handle: a Slack user “@user” will result in
a value of “user”.

	GORT_COMMAND: The name of the current command being executed.
Does not include the bundle; that is, when executing the command
twitter:tweet, for example, GORT_COMMAND will equal “tweet”.

	GORT_INVOCATION_ID: A unique ID string uniquely identifying the
invocation.

	GORT_ROOM: The chat room where the command was invoked. This is
the bare room name: if it was executed in the “#general” channel,
this value would be “general”. For direct messages, this will be the
string “direct”.

	GORT_SERVICE_TOKEN: A unique token for accessing Gort’s service
infrastructure.

	GORT_SERVICES_ROOT: Host and port for accessing Gort’s service
infrastructure.

All other environment variables (e.g., PATH, USER, etc.) are
inherited from the execution container.

Footnotes

10. Command Bundles

Bundles (or “command bundles”) are the packaging unit for collections of
one or more commands. They are sets of related commands that, when
installed in Gort, may be executed by users from any connected (and
allowed) chat service.

10.1. Bundle Configurations

A bundle configuration is a YAML#1-formatted
document that describes a single bundle, including its name,
description, version, container image,
and one or more commands. Additionally, each command definition includes
a name, description, and which binary in the container to execute when
the command is triggered by a user.

Tip

See Bundle Configurations for more information.

10.2. Permissions and Rules

Importantly, each command also includes one or more rules, which
allows operators fine-grained control over who is able to execute chat
commands, extending even to control over particular invocations of chat
commands.. Permissions are namespaced to the bundle they originate from,
so installing a bundle’s permissions will never conflict with any
existing rules. Except for admin, permissions are never
automatically assigned to users.

Tip

See Permissions and Rules for more information.

10.3. Writing a Command Bundle

Each references a single Docker container
image#2 that contains
all the binaries and other dependencies for executing one or more
commands. They also include some data about the commands, including a
small amount of documentation and other metadata.

Tip

See Writing a Command Bundle for more information.

10.4. Managing Bundles

Bundles can be installed into Gort by an administrator (or any user with
the manage_commands permission) using the gort command-line
utility.

Tip

See Managing Bundles for more information.

Footnotes

	#1

	https://yaml.org/

	#2

	https://www.docker.com/resources/what-container

11. Bundle Configurations

A command bundle is a set of related commands that, when installed in
Gort, may be executed by users from any connected (and allowed) chat
service. A bundle configuration specifies which binary to execute, and
who may execute the commands (i.e., which users with which permissions).

11.1. A Minimal Bundle Configurations

A minimal bundle configuration looks like the following:

gort_bundle_version: 1

name: my_bundle
description: "Does bundle things"
version: 0.1
image: ubuntu:20.04

commands:
 date:
 executable: ["/bin/date"]
 description: "Displays the current date and time"
 rules:
 - allow

The name, description, version, gort_bundle_version and
commands fields are all required. Let’s go over what these do:

	gort_bundle_version is the version of Gort’s bundle system that
your bundle was built for. The current bundle version is 1, which is
used through out the rest of this document.

	name is the name of your bundle, which also serves as the
namespace under all of the bundle’s commands are installed. In this
case the date command’s fully-qualified name is my_bundle:date.

	description is a short, one-line description for your bundle.
This will be printed along with a list of all installed bundles when
a user runs the !gort:help command.

	version is the semver#1 version number of
your bundle. If you want to install a new version of bundle then you
first need to uninstall the old one.

	docker specifies the Docker image that contains all of the
bundle’s commands. Limit: one image per bundle.

	commands are a map of zero or more commands that can be invoked
in the bundle, and their associated executables. The command name, as
defined here, will be the command invoked by users; it doesn’t have
to match the name of the binary.

11.1.1. Commands

Commands are possibly the most complex component of the bundle config.

As an example let’s look at an excerpt from the config for an ec2
bundle.

...
commands:
 find:
 executable: [/usr/local/bin/ec2_find]
 description: Finds an AWS EC2 instance
 rules:
 - must have ec2:view
...

Here you can see the command name, “find”, under which are nested
several fields.

	executable points to the command script or binary that’s to be
run when the command is executed. Optional. If omitted, this defaults
to the image’s specified
ENTRYPOINT#2.

	description is a short, one-line description for the command.
This is the info that will appear along with a list of commands when
a user runs the help command.

	rules is a required list of strings that define what permissions
are required to run the command. In this example, the ec2:view
permission is required. See Permissions and Rules to learn more about rules and
their construction.

11.1.2. Permissions

Most commands require permissions to run. Permissions are specified by
in the bundle config as a list of strings at the top level. Here is
another excerpt of the ec2 config as an example.

gort_bundle_version: 1

name: ec2
description: Manage EC2 instances and related services
version: 0.4.0
permissions:
- view
- destroy
- create

...

In this example, three permissions are defined. When being referenced in
a command rule a permission’s fully-qualified name must be used: e.g.,
ec2:view or ec2:destroy.

11.1.3. Documentation fields

There are a number of fields dedicated to rendering help output via the
help command, both for the bundle and the command.

11.1.3.1. Bundle

The following documentation fields can also be used at the top level of
a bundle configuration:

	long_description is a separate section for a longer form
description, which can include things like what configuration is
required, how commands should be used, and more details about the
underlying implementation.

	author is where the bundle author can leave their name and email
address if a user needs their contact information.

	homepage is a URL for the bundle, typically a GitHub repository.

11.1.3.2. Command

The following documentation field can also be used in each command
configuration:

	long_description is a long-form description used to explain
details of a command that don’t fit into other sections like an
explanation of required arguments or about the structure of the
output.

11.2. Bundle Installation

Command bundles can be explicitly installed using
gort bundle install. Bundles can only be installed this way by an
adequately-privileged user (an administrator or other user with the
gort:manage_bundles permission), and are disabled by default.

See Managing Bundles for more information on
how to explicitly install command bundles.

11.3. A Complete Bundle Configuration Example

Below is a complete example of a bundle configuration. In fact, it’s the
default bundle used by Gort to install the gort bundle (minus a few
commands, cut for brevity).

gort_bundle_version: 1

name: gort
version: 0.0.1
author: Matt Titmus <matthew.titmus@gmail.com>
homepage: https://guide.getgort.io
description: The default command bundle.
long_description: |-
 The default command bundle, which contains the administrative commands and
 the permissions required to use them.
 Don't change or override this unless you know what you're doing.

permissions:
 - manage_commands
 - manage_groups
 - manage_roles
 - manage_users

docker:
 image: getgort/gort
 tag: v0.9.0

commands:
 bundle:
 description: "Perform operations on bundles"
 long_description: |-
 Allows you to perform bundle administration.

 Usage:
 gort:bundle [command]

 Available Commands:
 disable Disable a bundle by name
 enable Enable the specified version of the bundle
 info Info a bundle
 install Install a bundle
 list List all bundles installed
 uninstall Uninstall bundles
 yaml Retrieve the raw YAML for a bundle.

 Flags:
 -h, --help help for bundle
 executable: ["/bin/gort", "bundle"]
 rules:
 - must have gort:manage_commands

 version:
 description: "Displays version and build information"
 long_description: |-
 Displays version and build information.

 Usage:
 gort:version [flags]

 Flags:
 -h, --help help for version
 -s, --short Print only the version number
 executable: ["/bin/gort", "version"]
 rules:
 - allow

 help:
 description: "Provides information about a command"
 long_description: |-
 Provides information about a command.

 If no command is specified, this will list all commands installed in Gort.

 Usage:
 gort:help [flags] [command]
 executable: ["/bin/gort", "hidden", "commands"]
 rules:
 - allow

Footnotes

	#1

	https://semver.org

	#2

	https://docs.docker.com/engine/reference/builder/#entrypoint

12. Permissions and Rules

The Gort chatbot system comes equipped with a comprehensive and flexible
authorization system which allows operators fine-grained control over
who is able to execute chat commands, extending even to control over
particular invocations of chat commands.

In this document, we will discuss the individual pieces of the
authorization system and take a look at how it is used in practice.

12.1. Authorization Rules

At the core of Gort’s authorization system are rules. Each time a user
issues a chat command to Gort, rules governing the execution of that
command are looked up and applied to the current invocation. If a match
is found, the list of permissions the invoking user has is consulted to
see if it includes the permission(s) required in the matching rule. If
it does, the command is executed; if not, command processing immediately
stops.

To make things concrete, we’ll start with a simple authorization rule.
(There is actually a separate rule language that can be used to make
rather complex rules, but for now we’ll start simple. Feel free to read
more detailed explanations of how rules are formed. In any event, the
details of the language are orthogonal to the authorization system
itself.)

when command is gort:bundle must have gort:manage_commands

This is the simplest form of rule, and gives us all we need to discuss
the authorization system. This rule states, in English, that for a user
to execute the gort:bundles chat command (which allows users to
enable or disable entire bundles of commands at once), they must have
the gort:manage_commands permission granted to them.

With that rule in place, let’s say I type the following command
invocation in my chat application:

!gort:bundle disable github

I’m telling Gort to disable all the commands in the github bundle. In
order for that command to be executed, Gort must verify, according to
the rule above, that I have the gort:manage_commands permission. It
just so happens that I do, so the command succeeds; now nobody can check
how many pull requests are open on their favorite repository.

Perhaps you want to restrict the ability to disable a particularly
important bundle; perhaps you’ve written one called prod to help manage
your organization’s production environment. We can add this with a new
rule that matches the invocation

!gort:bundle disable prod

That rule might look like this:

when command is gort:bundle
 with arg[0] == "disable"
 and arg[1] == "prod"
must have site:manage_prod and gort:manage_commands

Here we can see a rule that applies to a very specific invocation of a
command. If you have the gort:manage_commands permission, you can
manipulate bundles in general, but in order to disable the prod bundle,
you must have the additional site:manage_prod permission.

As you can imagine, the ability to define rules like this offers a lot
of power. We’ll talk more in depth about rules later; the remainder of
this document will delve into the specifics of the authorization system
itself, explaining the its components and how they all work together.

Rules can be viewed, created, and deleted using the gort:rules
command. In particular, simple rules of the form when command is must
have can be created thusly:

!gort:rule create <COMMAND> <PERMISSION>

Note that both and must exist, and be typed as fully-qualified names.

12.2. Components of the Authorization System

12.2.1. Permissions

Permissions are at the base of Gort’s authorization system. They act as
a kind of token; you can carry out certain actions if you possess the
correct token(s).

You will notice that permissions have a structure:
gort:manage_commands, site:manage_prod, etc. Permissions are
namespaced; here we have a manage_commands permission in the
operable namespace, and a manage_prod permission in the site
namespace. In general, every bundle of commands defines its own
permission namespace. This allows bundle authors the flexibility to
define permissions that are used by commands in the bundle without
worrying about conflicting with permissions from any other bundles that
happen to be installed on a Gort system. We can have an
gort:manage_commands permission as well as a
site:manage_commands permission without any problems.

There are two ways that permissions can be created. The first is through
bundle installation. All command bundles have the option to define
permissions and authorization rules to help bootstrap the bundle in a
Gort system. The operator is not under any obligation to use these rules
or permissions, and is free to define their own, but they are always
installed with the bundle.

The second way that permissions can be created is directly by the Gort
operator. This is where the special site namespace comes into play. site
is unique; it is the only permission namespace that is not associated
with a corresponding command bundle. All permissions created by
operators are part of the site namespace. It is the mechanism by which
the permission scheme may be customized to the needs of the operator’s
unique environment and use cases.

12.2.2. Roles

Moving up from permissions, we arrive at roles, which are collections of
associated permissions. While permissions can be created when you
install command bundles, roles are something purely under your control
as a Gort operator; you create them and you manage them.

12.2.3. Users

In order for permissions to be useful, we have to have a way to
associate them with people invoking commands. The Gort user is the
unique identity to which permissions are ultimately attached.

Each person that can interact with Gort has an associated user account.
This is also the identity with which a person will interact with Gort’s
REST API.

It is important to understand that this “Gort User” is not the same as a
person’s “handle” in a particular chat system. In fact, a Gort user can
be associated with multiple handles from different chat systems. For
instance, I may be @matt in Slack, but mtitmus in Gort. Gort can
recognize this and map these various chat handles back to the same Gort
user, allowing authorization to be managed centrally and independently
of which chat system is in use.

Users are scoped to the entire Gort installation; that is, there is no
higher-level namespace (e.g., “organization”) into which users are
grouped.

12.2.4. Groups

Finally, Gort groups collect Gort users together. Any number of users
may be in a group, but only users may be members of groups.

12.3. Bringing It All Together

Now that you know about permissions, roles, users, and groups, how do
you use them?

We know that roles are collections of permissions, and groups are
collections of users, but that ultimately, somehow, permissions become
associated with users. This missing link here is that roles can be
granted to groups.

Thus, a user has all the permissions in all the roles granted to all the
groups of which she is a member.

To grant a permission to a user, then, the user must be placed into a
group that has been granted a role that contains that permission. While
this might seem a bit cumbersome from the perspective of a single user
and a single permission, it makes global management easier; it frees you
to think in terms of the higher-level constructs of roles and groups,
without having to worry about “exceptions to the rule” like individual
users being directly granted a permission, or potentially complicated
group hierarchies.

As an example, let’s look at how we might set up a Gort system to grant
permissions for the mist EC2 command bundle. For this demonstration,
let’s say we have three users: Alice, Bob, and Charlie. Furthermore,
let’s say that Alice is on our Operations team, while Bob and Charlie
are on the Development team. Let’s also stipulate that everyone on the
operations team should be able to perform any action with Mist, while
developers start out with read-only permissions.

Looking at Mist’s bundle configuration, we see it declares the following
permissions:

	mist:view

	mist:change-state

	mist:destroy

	mist:create

	mist:manage-tags

	mist:change-acl

It looks like we’ll want to give operations folks all of these
permissions, and developers only mist:view. Let’s set up some roles to
express this.

First a mist_admin role, with all the mist permissions:

gort role create mist_admin
gort role grant mist_admin mist:view
gort role grant mist_admin mist:change_state
gort role grant mist_admin mist:destroy
gort role grant mist_admin mist:create
gort role grant mist_admin mist:manage-tags
gort role grant mist_admin mist:change-acl

And now, a mist_read_only role:

gort role create mist_read_only
gort role grant mist_read_only mist:view

Now we have our roles, but we have nothing to grant them to. Let’s
create some groups.

gort group create operations
gort group create developers

Now let’s grant the roles to our new groups.

gort group grant operations mist_admin
gort group grant developers mist_read_only

We’re almost there. We have the groundwork laid; all that remains is to
add our users.

gort group add operations alice
gort group add developers bob charlie

Any changes to the permission structure take effect immediately. If the
mist:view permission is removed from the mist_read_only role,
Bob and Charlie immediately lose the ability to run commands that
require that permission (unless they happen to also be members of
another group that has the permission via some other role). Similarly,
if Danielle is added to the operations group, she immediately has all
the mist permissions.

Note also that all authorization rules are written in terms of
permissions, and not roles,

Footnotes

13. Writing a Command Bundle

Documentation coming soon!

Footnotes

14. Installing Your First Command Bundle

Once you have a command bundle, you’ll need to install and enable it for
it to be useful.

14.1. Creating Your Bundle

To create a bundle, you first need a bundle configuration: a
YAML-formatted file that supplies Gort with all of the information it
needs to install and execute commands in your bundle.

For a detailed description of bundle configurations, go to the Bundle Configurations section in the documentation.

For our example we will be using the following config. It’s a simple
bundle with only one un-enforcing command. Just create a file named
my_bundle.yaml and paste the contents below into it. It doesn’t
actually matter what you name the file, just make sure that it is
properly-formatted YAML and that it has the correct extension, .yaml
or .yml.

my_bundle.yaml

gort_bundle_version: 1

name: my_bundle
description: My bundle
version: "0.0.1"
image: ubuntu:20.04

commands:
 date:
 executable: ["/bin/date"]
 rules:
 - allow

If your commands specify any rules, other than the special “allow” rule,
you will need to make sure the proper grants are in place. Check out
permissions-and-rules` to learn more.

Bundles are most easily created with Gort’s command line interface:
gort. To create your bundle just type the following at the command
prompt. Adjust the my_bundle.yaml bit to point to the config file
that you created.

$ gort bundle install my_bundle.yaml

And there you have it! Bundle created. Now let’s see about enabling it.

14.2. Enabling Your Bundle

By default any bundles added to Gort are added in the disabled state.
This way you don’t have to worry about accidentally exposing commands
that aren’t fully configured, or otherwise not ready for production.

Enabling commands is easy though. We’ll use the gort CLI! By default
the highest installed version of a bundle will be enabled. To enable a
different version just pass the version to enable to gort.

$ gort bundle enable my_bundle

$ gort bundle enable my_bundle 0.0.1

14.3. Success!

That’s it! You’ve successfully installed your first bundle. If
everything went properly you should see the new command in Gort’s
command list.

User:
!help

Gort:
I know about these commands:

- gort:bundle
- gort:group
- gort:help
- gort:role
- gort:user
- gort:version
- my_bundle:date

Try calling `gort:help COMMAND` to find out more.

Finally, you should be able to run it!

User:
!date

Gort:
Wed Nov 17 00:10:24 UTC 2021

Footnotes

15. Managing Bundles

This document details the commands used to manage bundles.

Currently, all command bundles are executed on the same machine as the
Gort Controller. In a future release, support for
“relays” will be added, which will allow commands to be executed on
different machines running a Relay process.

15.1. Prerequisites

For simplicity we will be using the gort command-line utility to
demonstrate bundle management. Bundle management mostly involves use of
the bundle subcommand. However, you aren’t explicitly required to
use gort to manage bundles: you can use the !gort:bundle
command, or you can even make calls directly to the API if you like.

The remainder of this page assumes that you have a working Gort
Controller and the gort utility.

15.2. Installing Bundles

Bundles are installed by uploading bundle configurations to Gort, which
then registers the bundle. Registration includes the creation of the
permissions declared by the bundle, as well as any default rules
specified in the bundle’s metadata.

Importantly, after installation your bundle command will be available,
but may not be usable yet. Before anyone can execute the new commands,
make sure their user permissions are set properly. See Permissions and Rules to learn more.

Bundles are installed via the bundle install sub-command in
gort.

$ gort bundle install --help
Install a bundle from a bundle file.

When using this command, you must provide the path to the file, as follows:

 gort bundle install /path/to/my/bundle/config.yaml

Usage:
 gort bundle install [flags] config_path

Flags:
 -h, --help Show this message and exit

Global Flags:
 -P, --profile string The Gort profile within the config file to use

15.3. The Bundle Configuration File

The only required argument for gort bundle install is the path to
the bundle’s config file.

All bundles have a config file, a yaml-formatted document that
contains information for installing and executing commands in your
bundle. To learn more about configuration files take a look at Bundle
Configurations.

We won’t discuss bundle configurations in detail here, but minimally
each must contain:

	name - The name of your bundle.

	version - The version of your bundle in semver format.

	gort_bundle_version - The version of the config file format
(currently only version 1 is used).

	commands - A map of commands to be included in the bundle.

A minimal bundle config might look something like this:

gort_bundle_version: 1

name: my_bundle
version: 0.0.1
description: My bundle
commands:
 date:
 executable: [/bin/date]
 rules:
 - allow

The command to install the bundle would be something like
gort bundle install /path/to/my_bundle.yml.

Attention

Bundles are disabled when first installed. You must enable them before you can use them.

 16. Command Execution Rules

16. Command Execution Rules

16.1. Rule Structure

Rules help Gort to determine who is able to perform what task. Gort
rules follow a specific format. The rule structure describes what
command is executed and what permission is needed in order to execute
the command. If a user does not have the specified permission, the user
is not able to execute the command.

The general form of a command is:

COMMAND [when CONDITIONS] [allow|must have PERMISSION]

	Command: The command indicates the command that’s affected by the
rule. Commands are referred to as bundle_name:command_name. For
example, the splitecho command in the echo bundle would be
referenced as echo:splitecho.

	Conditions: The (optional) conditions clause indicates when the rule
should be is applied. It starts with the keyword when, and
consists of one or more logical statements. See below for more
detail. If a rule contains no conditions, it always applies when
the command is used.

	Permissions: The permissions clause indicates the permissions that a
user must have to execute the command when the conditions are met. It
begins with the phrase must have. Like commands, permissions are
namespaced: bundle_name:permission_name.

	Allow: The standard permissions clause may be replaced with the
allow keyword, which can be used to allow a command meeting the
rule conditions to be executed by any Gort user. allow is used in
lieu of a permissions clause, and may not be accompanied with any
other keyword or phrase.

A basic example of a rule is:

foo:bar with option[delete] == true must have foo:destroy

This rule states that a user attempting to use the bar command from
the foo bundle, with the delete flag set, must have the
foo:destroy permission.

Rules can also be used to grant broad permissions by using the allow
keyword:

foo:biz allow

This is the simplest possible rule, which allows any user to use the
foo:biz command under all conditions.

16.2. The Conditions Clause

The conditions rule clause begins with the keyword with.

The conditions clause can match specific command parameter, allowing
you to create rules that apply under very specific invocations of a
command.

16.2.1. Options and Arguments

Any command can have two kinds of command parameters: options, are a
general term for command flags and switches, and arguments, which are
the main inputs into the command.

For example, given the following command:

curl -I --capath /home http://example.com

The options are -I and --capath /home, and the parameter is
http://example.com

16.2.2. Testing Options and Arguments

Each rule can reference two pre-defined two data structures: option
and arg.

	option: A map or dict of the commands options. The value of
specific options can be accessed using standard map notation.

	arg: A (zero-indexed) list of the command arguments. Specific
arguments can be accessed using standard map notation.

16.2.3. Logical Operators

Individual (non-collection) values can logically evaluated using the
<, >, == and != operators:

	with option["dry-run"] == true

Regular expressions may also be used.

	with option["set"] == /.*/

Not only can specific arg positions be referenced by index, the
entire parameter list can also be evaluated as a string by omitting the
index. For example, given the following command:

echo foo bar

The following statements are equivalent:

	foo:bar with arg[0] == 'foo' and arg[1] == 'bar' allow

	foo:bar with arg == 'foo bar' allow

16.2.4. Sets

Options and arguments can be tested against sets of conditions by using
one of the following keywords:

	in – Applied to a non-collection value, resolves to true if and
only if the value matches a value in the set.

	any, in – Applied to a collection value, resolves to true if
and only if any value in the collection matches a value in the set.

	all, in– Applied to a collection value, resolves to true if
and only if all value in the collection match a value in the set.

Conditional sets can include zero or more values between square
brackets. Regular expressions are also legal members and will be
evaluated accordingly. Some examples are:

	foo:bar with arg[0] in ['baz', false, 100] must have foo:read

	foo:bar with option["foo"] in ["foo", "bar"] allow

	foo:bar with any option == /^prod.*/ must have foo:read

	foo:bar with any arg in ['wubba'] must have foo:read

	foo:bar with any arg in ['wubba', /^f.*/, 10] must have foo:read

	foo:bar with all arg in [10, 'baz', 'wubba'] must have foo:read

	foo:bar with all option < 10 must have foo:read

	foo:bar with all option in ['staging', 'list'] must have foo:read

16.2.5. Combining Qualifiers

Arbitrarily long compound qualifiers can be constructed using the
and and/or or keywords, so your rules can be as simple or as
complicated as you need them to be. For example, the following rule is
legal:

foo:bar with arg=="prod" and option["delete"] == true or option["set"] == /.*/ must have foo:destroy

16.3. Permissions

The permissions clause is where you state any permissions that are
required to execute the command. The beginning of the permissions clause
is indicated by the phrase must have.

Like the conditions clause, it can be arbitrarily complex, and can a
single permission, a specific combination of permissions combination, or
a list of permissions. It supports the same operations as well:

	or

	and

	any in

	all in

	allow

For example, the following are rule examples with valid permission
settings:

	foo:baz with option[delete] == true must have foo:write and site:admin

	foo:export must have all in [foo:write, site:ops] or any in [site:admin, site:management]

	foo:bar must have any in [foo:read, foo:write]

	foo:qux must have all in [foo:write, site:ops] and any in [site:admin, site:management]

	foo:biz allow

Note the special allow keyword, which can be used in lieu of a
permissions clause to allow a command to be executed by any registered
user in Gort.

16.4. Formal Definition

Gort’s command execution rule syntax may seem quite English-like, but
it’s actually a well-structured syntax describable as a formal
context-free
grammar#1.

For your reference, we have included the notation for Gort’s command
execution using Backus–Naur
form#2, a
metasyntax notation for context-free grammars that’s often used to
describe the syntax of computing languages used in computing.

<rule> ::= <arguments> " " <permissions> | <permissions> ;

<arguments> ::= "with " <argument> ;

<argument> ::= <argument_part> | <argument_part> " " <conditional> " " <argument> ;

<argument_part> ::= <argument_single> | <argument_plural> ;

<argument_single> ::= <variable_single> " " <operator> " " <variable_single> ;

<argument_plural> ::= "all " <defined_set> " " <operator_set> " " <variable_set> | "any " <defined_set> " " <operator_set> " " <variable_set> ;

<defined_set> ::= "arg" | "option" ;

<operator_set> ::= "in" | <operator> ;

<operator> ::= "==" | "!=" | "<" | "<=" | ">" | ">=" ;

<variable_single> ::= "arg[" <literal_integer> "]" | "option[" <literal_string> "]" | <literal> ;

<variable_set> ::= "[" <variable_list> "]" ;

<variable_list> ::= <variable_single> | <variable_single> "," <variable_set> ;

<conditional> ::= "and" | "or" ;

<permissions> ::= "allow" | "must have " <permission> ;

<permission> ::= <permission_part> | <permission_part> " " <conditional> " " <permission> ;

<permission_part> ::= <permission_single> | <permission_plural> ;

<permission_single> ::= <name> ":" <name> ;

<permission_plural> ::= "all in " <permission_set> | "any in " <permission_set> ;

<permission_list> ::= <permission_single> | <permission_single> ", " <permission_list> ;

<permission_set> ::= "[" <permission_list> "]" ;

<literal> ::= <literal_bool> | <literal_string> | <literal_number> | <literal_regex> ;

<literal_bool> ::= "true" | "false" ;

<literal_string> ::= '"' <string> '"' | "'" <string> "'" ;

<literal_number> ::= <literal_integer> | <literal_float> ;

<literal_regex> ::= "/" <regex> "/" ;

<literal_integer> ::= <digit>+ ;

<literal_float> ::= <digit>+ "." <digit>+ ;

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

<letter> ::= "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" | "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" ;

<symbol> ::= "|" | " " | "!" | "#" | "$" | "%" | "&" | "(" | ")" | "*" | "+" | "," | "-" | "." | "/" | ":" | ";" | ">" | "=" | "<" | "?" | "@" | "[" | "\" | "]" | "^" | "_" | "`" | "{" | "}" | "~"

<rune> ::= <letter> | <digit> | <symbol> ;

<string> ::= <rune>+

<character> ::= <letter> | <digit> ;

<name> ::= <character>+ ;

16.5. Todo

The following list includes some features that are considering adding to
the command execution rules language:

	Built-in/standard permissions (especially for Gort administration
actions)

	Syntax to access user/group/adapter attributes in rule conditions

	Built-in support functions in conditions?

If any of these is particularly important to you, or if you have an idea
for a feature not listed here, please feel free to create an
issue#3.

Footnotes

	#1

	https://en.wikipedia.org/wiki/Context-free_grammar

	#2

	https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

	#3

	https://github.com/getgort/gort/issues/new

 17. Dynamic Command Configuration

17. Dynamic Command Configuration

Commands often require access to runtime variables, particularly when interacting with external
services, ranging from mundane values (like the URL of a downstream resource) to highly sensitive
information (like database passwords or access tokens).

One (terrible) way of providing these values to a command might be baking them into the
bundle’s container image, but that has two problems:

	It limits command reusability by requiring all users to use the same configuration.

	It creates a security risk by making potentially sensitive values accessible to anybody who with access to the image.

Dynamic command configuration solves this problem by making it possible to securely store
configuration information so that it can be injected into worker containers at runtime as
specifically-named environment variables or files.

Note

Dynamic command configuration shouldn’t
be confused with the config.yaml file
that defines the commands, rules, and permissions present in each
command bundle. That configuration is effectively static. The
configuration we are concerned with is for the execution of
individual commands.

It’s also dynamic in the sense that it can be changed on-the-fly
by Gort administrators, with the changes taking effect nearly
instantaneously without restarting any applications.

Warning

Currently dynamic configurations can only be stored in plain text in the Gort
database. While a secure backend is currently in development, it is currently recommended
that dynamic configuration not be used to inject highly sensitive values.

17.1. Core Concepts

Dynamic configuration allows users to define one or more key-value pairs that are injected
as variables into the execution environment of a command. The key is usually a simple name, like
“url” or “email”.

Note

All configurations belong to a specific bundle. Dynamic configurations cannot be
assigned to multiple bundles.

The actual environment variable name is constructed by converting this key into an all-caps name
using the pattern BUNDLE_KEY. Dashes are also converted into underscores.

For example, a dynamic configuration named “user-email” that belongs to the “testing” bundle will
be injected into the command environment as TESTING_USER_EMAIL.

A command can then access it as an environment variable (e.g. ENV['TESTING_USER_EMAIL'] in
Ruby, os.environ['TESTING_USER_EMAIL'] in Python, etc.)

Warning

Each command in a bundle will receive the same dynamic configuration
environment. There is not currently a way to allow one command to
receive one set of variables while another receives a different set.

17.2. Layers

There are four layers:

	bundle
	Configurations at the bundle layer are applied to all of the commands in its respective
command bundle. This layer can be overridden by any other layer.

	channel
	Configurations made at the channel layer are applied to all commands in its bundle executed
in a specific channel. This layer can override bundle layer configurations, and can in turn be
overridden by group or user layer configurations.

	group
	Configurations made at the group layer are applied to all commands in its bundle executed
by a given group. This layer can override bundle and
channel layer configurations, and can be overridden by user layer.

	user
	Configurations made at the user layer are applied to all commands in its bundle executed
by a particular user. This layer can be override any other layer.

17.2.1. Layer Overriding

For any given bundle, the same configuration can be defined in multiple layers. In this case,
the layer with the highest precedence is the one that’s used.

The layer precedence order is as follows:

	User

	Group

	Channel

	Bundle

This allows you to, for example, define a default set of user credentials at the bundle level
while allowing a specific group and even specific users to define their own credentials for more
specialized purposes.

17.3. Managing Dynamic Configuration Values

Dynamic configurations can be managed using the gort config commands. There are three:

	gort config get: Used to retrieve one or more non-secret configuration values.

	gort config set: Used to create or update a configuration value.

	gort config delete: Used to delete a configuration value.

The flags accepted by each of these commands are as follows

	Flags

	Get

	Set

	Delete

	Description

	--bundle

	R

	R

	R

	The name of the bundle to configure.

	
--layer

	
O

	
O

	
O

	
One of: bundle, channel, group, user.

Default: bundle.

	--owner

	R

	R

	R

	The owning channel, group, or user.

	--key

	R

	R

	R

	The name of the configuration.

	
--secret

	
n/a

	
O

	
n/a

	
Makes a configuration value secret. Secret values

cannot be read using gort config get.

R=Required. O=Optional.

17.4. Future Steps

This feature is in a state of minimal viability, and many new features are planned for it. Including:

	The development of an optional secure backend. Initially this will support Hashicorp Vault.

	Allowing configuration value to be defined as code.

	Allowing configuration values to be injected as files (and not just environment variables).

Footnotes

 18. Output Format Templates

18. Output Format Templates

Output format templating is a powerful feature that allows you to
control the look and feel (and, to some degree, content) of any
information sent to users. Both Gort system messages and command output
support templates for customization (within the constraints imposed by a
given chat provider).

18.1. The four template types

The are four template types:

	Command templates, which are used to format the outputs from
successfully executed commands.

	Command error templates, which are used to format the error
messages produced by commands that exit with a non-zero status.

	Message templates, which are used to format standard informative
(non-error) messages from the Gort system (not commands).

	Message error templates, which are used to format error messages
from the Gort system (not commands).

Each of these have default values built into Gort, but each may be
customized via the templates block of the Gort
configuration. Furthermore, the command and
command error templates may be further customized per bundle, or even
per command.

18.2. Template Basic Format

Gort templates use Go’s template
syntax#1 to format output in a
chat-agnostic way.

For example, a very simple command template might look something like
the following:

{{ text | monospace true }}{{ .Response.Out }}{{ endtext }}

This template emits the command’s response (.Response.Out) as
monospaced text, which may look something like the following:

[image: Monospaced command output]

Monospaced command output

A slightly more complicated template, this one a command error
template (actually the default), is shown below.

{{ header | color "#FF0000" | title .Response.Title }}
{{ text }}The pipeline failed planning the invocation:{{ endtext }}
{{ text | monospace true }}{{ .Request.Bundle.Name }}:{{ .Request.Command.Name }} {{ .Request.Parameters }}{{ endtext }}
{{ text }}The specific error was:{{ endtext }}
{{ text | monospace true }}{{ .Response.Out }}{{ endtext }}

This one includes a header with a color and title, as well as some
alternating monospaced and standard text. In this case, this will format
a command error something like the following:

[image: Pretty command error message]
Sure that’s nice and all, but what’s all this .Response stuff?
That’s part of what’s called the “response envelope”, a data structure
that’s accessible from any template, which makes available all of the
data and metadata around one command request, execution, and response.
The response envelope is discussed in detail in The Response Envelope.

The available template tags and functions are also fully presented in Template Functions.

Footnotes

	#1

	https://pkg.go.dev/text/template

 19. The Response Envelope

19. The Response Envelope

The response envelope encapsulates all of the data and metadata around a
command request, execution, and response. It’s passed into the
templating engine, where it can be accessed directly by templates.

The response envelope consists of four major components:

	.Request – This describes the original request used to execute
the command, and contains all of the original command values, and
some data about the user and adapter.

	.Response – Contains the textual response emitted by the
command.

	.Data – This object contains metadata about the command
execution, including its duration and exit status.

	.Payload – If the command output is valid JSON, it will be
unmarshalled and placed here to be accessed by templates. Non-JSON
output will also be placed here, as a plain string.

These components (and any sub-components, where relevant) are detailed
below.

19.1. .Request

The .Request object represents the original command request used to
execute the command. It contains the original command values as well as
the user and adapter data.

	Syntax

	Type

	Description

	.Request.Adapter

	string

	The name of the adapter this request originated from

	.Request.ChannelID

	string

	The provider ID of the channel that the request originated in

	.Request.Parameters

	[]string

	Tokenized command parameters

	.Request.RequestID

	int64

	A unique requestID

	.Request.Timestamp

	time.Time

	The time this request was triggered

	.Request.UserID

	string

	The provider ID of user making this request

	.Request.UserEmail

	string

	The email address associated with the user making the request

	.Request.UserName

	string

	The Gort username of the user making the request

19.2. .Request.Bundle

The .Request.Bundle object represents the bundle that owns the
command.

19.3. .Request.Command

The .Request.Command object represents the command definition.

19.4. .Response

The .Response object contains the response text emitted by an
executed command.

	Syntax

	Type

	Description

	.Response.Lines

	[]string

	The command output (from both stdout and stderr) as a string slice, delimitted along newlines.

	.Response.Out

	string

	The command output as a single block of text, with lines joined with newlines.

	.Response.Structured

	bool

	true if the command output is valid JSON. If so, then it also be unmarshalled as .Payload; else .Payload will be a string (equal to .Response.Out).

	.Response.Title

	string

	A title. Usually only set by the relay for certain internally-detected errors. Generally a short description of the result.

19.5. .Data

The .Data object contains data about the command execution,
including its duration and exit status. If the relay sets an an explicit
internal error, it will be here as well.

	Syntax

	Type

	Description

	.Data.Duration

	time.Duration

	Duration is how long the command required to execute.

	.Data.ExitCode

	int16

	ExitCode is the exit code reported by the command.

	.Data.Error

	error

	Error is set by the relay under certain internal error conditions.

19.6. .Payload

.Payload includes the command output. It’s a very special animal,
because its contents can very according to the contents and format of
the response returned by the command.

Specifically, if the command output is formatted as structured JSON, the
output will be unmarshalled and made accessible via .Payload as if
were any other object. Additionally, the value of
.Response.Structured will be true.

For example, if the contents of the command response are as follows:

{
 "User":"Michael Scott",
 "Company":"Dunder Mifflin",
 "Results":[
 {
 "Name":"Bond",
 "Reviews":523,
 "Description":"Bond paper is stronger and more durable than the average sheet of paper.",
 "Image":"https://dunder-mifflin/bond.jpg"
 }, {
 "Name":"Gloss coated",
 "Reviews":1234,
 "Description":"Gloss paper is typically used for flyers and brochures as it has a high shine.",
 "Image":"https://dunder-mifflin/gloss-coated.jpg"
 }
]
}

So a template containing the instructions
{{.Payload.User}}, {{.Payload.Company}} would
resolve as Michael Scott, Dunder Mifflin.

If the response isn’t structured, .Response.Structured will be
false, and .Payload will be a standard string equal to
.Response.Out.

Footnotes

 20. Template Functions

20. Template Functions

Output format templating is a powerful feature that allows you to
control the look and feel (and, to some degree, content) of any
information sent to users. Gort templates are based on Go
templates#1, and support all of
their features, including variables, logic, and flow control.

There are three main types of elements used to construct elements:

	Tags: Tags (or “actions”) represents visual elements or
directives, such as {{ text }} or
{{ image }}. All text and directives must be
enclosed within (or between) tags.

	Functions: Functions are used to modify the contents or behavior
of tags. They’re called using pipes (|) within a tag. For
example,
{{ image "foo.jpg" | thumbnail true }} turns
an image into a thumbnail image. Some functions can only be used with
specific tags. Sprig#2
functions are also supported.

	Fields: A call into a data value, typically the the Response
Envelope.

The supported elements are detailed below.

20.1. Tags (Actions)

20.1.1. {{alt}}

Provides alternative text to be shown if other elements in a message
cannot be rendered. Only the first instance of
{{alt}} will be shown.

Example: {{ alt "This is alternative text." }}

20.1.2. {{divider}}

Emits a simple divider, used to break up blocks.

20.1.3. {{ header }}

Can be used to decorate or modify the behavior of the entire template.
If a {{ header }} is used, it must be the first
line of the template.

	Function

	Description

	Example

	color

	Adds a colored sidebar to the output block. Must be a hexadecimal string with the format #RRGGBB.

	{{ header | color "#FF0000" }}

	title

	Adds a title to the output block.

	{{ header | title "Error?" }}

20.1.4. {{text}} and {{endtext}}

Used to describe a text block or element. They may be used inside of a
{{section}}/{{endsection}}
pair.

Example:
{{ text }}This is a plain text block.{{ endtext }}

	Function

	Description

	Example

	inline

	Makes the text “inline” (in the Discord sense). If true, a title is also expected.

	{{ text | inline true | title "Favorite Food" }}Pizza{{ endtext }}

	monospace

	All text in the block is monospaced.

	{{ text | monospace true }}THIS IS CODE.{{ endtext }}

	title

	Adds a title to the text block.

	{{ text | title "Favorite Food" }}Pizza{{ endtext }}

20.1.5. {{section}} and {{endsection}}

Sections can be used to group elements together. These are only
supported in Slack; they are ignored in Discord.

These are often used with a range loop of some kind over a
collection:

{{ text }}Here are your results:{{ endtext }}
{{ range $index, $loc := .Payload.Locations }}
{{ section }}
{{ text | title $loc.Title | inline true }}$loc.Name{{ endtext }}
{{ image $loc.Image | thumbnail true }}
{{ endsection }}
{{ end }}

20.1.6. {{image}}

Outputs an image whose URL is specified in the argument. They may be
used inside of a
{{section}}/{{endsection}}
pair.

Example:
{{ image "https://example.com/img/image1.png" }}

	Function

	Description

	Example

	thumbnail

	Causes the image to be presented as a thumbnail (usually for a block or section).

	{{ image .Payload.Image | thumbnail true }}

20.2. Additional Functions

In addition to the above, all of the Sprig
library#3 functions are
supported as well.

Footnotes

	#1

	https://pkg.go.dev/text/template

	#2

	https://masterminds.github.io/sprig/

	#3

	https://masterminds.github.io/sprig/

 21. Going Forward: Features to Look Forward To

21. Going Forward: Features to Look Forward To

The following is a list of major features that are planned for version
1.0:

	Triggers. Allow Gort to execute existing bundled commands in
response to non-command chat
input#1. (Priority:
very high)

	Dynamic command configuration. Allow dynamic values like tokens
and passwords to be securely passed to commands at
runtime#2. (Priority:
very high)

	Custom webhooks. Expose custom (auth-gated) RESTful
endpoints#3 that can be
used to execute existing bundled commands. (Priority: high)

	Easing Rule and Permission Design. Addition of a command-line
rule tester#4.
(Priority: high)

	Two-factor authentication. Add support for two-factor
authentication#5.
(Priority: high)

	Dual authorization. Add support for dual (two-person)
authorization#6.
(Priority: high)

	Simplifying audit log access. Create a `gort logs
command <https://github.com/getgort/gort/issues/156>`__. (Priority:
medium-high)

	Internal key/value store. Allow commands access to an
internally-scoped key/value
store#7 to maintain
state, a little like HTTP cookies. (Priority: medium)

	Support for other chat platforms. Microsoft
Teams#8 first, others
TBD (Priority: medium-low)

Have any other ideas? We want to hear
them!#9

Footnotes

	#1

	https://github.com/getgort/gort/issues/117

	#2

	https://github.com/getgort/gort/issues/114

	#3

	https://github.com/getgort/gort/issues/118

	#4

	https://github.com/getgort/gort/issues/35

	#5

	https://github.com/getgort/gort/issues/132

	#6

	https://github.com/getgort/gort/issues/131

	#7

	https://github.com/getgort/gort/issues/128

	#8

	https://github.com/getgort/gort/issues/121

	#9

	https://github.com/getgort/gort/issues

 Index

Index

 Audit Log Events

Audit Log Events

Documentation coming soon!

Footnotes

 Designing Commands

Designing Commands

This section isn’t written yet, but it will be soon.

Footnotes

 Coming Soon!

Coming Soon!

This section isn’t written yet, but it will be soon.

Footnotes

 Coming Soon!

Coming Soon!

This section isn’t written yet, but it will be soon.

Footnotes

 User Management

User Management

Documentation coming soon!

Footnotes

 Usage

Usage

Installation

To use Lumache, first install it using pip:

(.venv) $ pip install lumache

Creating recipes

To retrieve a list of random ingredients,
you can use the lumache.get_random_ingredients() function:

The kind parameter should be either "meat", "fish",
or "veggies". Otherwise, lumache.get_random_ingredients()
will raise an exception.

For example:

>>> import lumache
>>> lumache.get_random_ingredients()
['shells', 'gorgonzola', 'parsley']

Footnotes

 Coming Soon!

Coming Soon!

This section isn’t written yet, but it will be soon.

Footnotes

_static/plus.png

_static/file.png

_images/gort-help.png
ﬁ Tom Elliott 7:15PM
PN lhelp
. Gort APP. 7:15PM
Executing command: help
I know about these commands:

- gort:bundle
- gort:config
- gort:group

- gort:help

- gort:role

- gort:user

- gort:version
- gort:whoami

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to the Gort Guide!

 		
 Architecture

 		
 Gort Controller

 		
 Data Store

 		
 Chats

 		
 Adapters

 		
 Chat Services

 		
 Relays and Commands

 		
 Command Bundles

 		
 Relays

 		
 Relay Workers

 		
 Message Bus

 		
 Quick Start

 		
 Prerequisites

 		
 Create your Configuration File

 		
 Create Your Bot User

 		
 Create a Slack Bot User

 		
 Create a Discord Bot User

 		
 Build the Gort Image (Optional)

 		
 Starting Containerized Gort

 		
 Bootstrapping Gort

 		
 Using Gort

 		
 Getting Started

 		
 Configuring Gort

 		
 Deploying Gort

 		
 Bootstrapping Gort

 		
 Configuring Gort

 		
 Reloading a Configuration

 		
 The Configuration File

 		
 <gort>

 		
 <database>

 		
 <docker>

 		
 <kubernetes>

 		
 <discord>

 		
 <slack>

 		
 <jaeger>

 		
 <templates>

 		
 Deploying Gort

 		
 Running Gort in Kubernetes

 		
 Prerequisites

 		
 Deployment

 		
 Running Gort in Docker

 		
 Building Your Own Gort Image (Optional)

 		
 Starting Containerized Gort

 		
 Running Gort as a Native Gort Binary

 		
 Installing Gort via go install

 		
 Building Gort From Source

 		
 Executing a Native Binary

 		
 Bootstrapping Gort

 		
 Commands and Bundles

 		
 Commands

 		
 Bundles

 		
 Bundle Permissions and Rules

 		
 Example: The gort Bundle

 		
 Invoking Commands

 		
 Shortcuts

 		
 Triggers

 		
 Implementation Details

 		
 Commands As Containers

 		
 Creating the Container

 		
 Executing the Command

 		
 Command Parameters

 		
 Termination

 		
 Output

 		
 Presentation

 		
 Additional Reading

 		
 Command Environment Variables

 		
 Command Bundles

 		
 Bundle Configurations

 		
 Permissions and Rules

 		
 Writing a Command Bundle

 		
 Managing Bundles

 		
 Bundle Configurations

 		
